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Abstract

We discuss a novel simulation method suitable for simulating phenomena involving particle exchange. The
method is a molecular dynamics version of the Gibbs-Ensemble Monte Carlo technique, which has been
developed some years ago for the direct simulation of phase equilibria in fluid systems. The idea is to have
two separate simulation boxes, which can exchange particles or molecules in a thermodynamically con-
sistent &ishion. Wediscuss the general idea of the Gibbs-Ensemble Molecular Dynamics technique and
present examples for different simple atomic and molecular fluids. Specifically we will discuss Gibbs-
Ensemble Molecular Dynamics simulations of gas-liquid and liquid-solid equilibria in Lennard-Jones sys-
tems and in hexane as well as an application of the method to adsorption.
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between the surfaces as the inter-surface separation is re-
Introduction duced. Thus, such simulations are plagued by the compara-

tively large portion of the system devoted to the ‘inter-
There are numerous phenomena, which can be studied vface’ between the slit and the reservoir, which causes un-
computer simulation, where it is advantageous or even neavanted artiicts. Asecond example is the simulation of
essary to vary the particle number during the simulationosmotic phenomena. Here the computer simulation would
Three simple examples may serve to illustrate this pointhave to include both the osmotic cell as well as the corre-
The forces between two planar surfaces at close proximsponding bulk solvent surrounding it. One may for instance
ity can be related to the microscopic interactions on thehink of simulating the swelling of a polymer network in
molecular scale using the so called surface force appara@ontact with a solvent. Because molecular simulations still
tus [1]. A computer simulation of a surface force appara-contain rarely more than a few thousand atoms, the inclu-
tus would have to include not only the solid surface-to-sion of a large interfacial region may render such a simu-
solid surface interface. Usually there are moleculedation impossible (for realistic systems). Finally, we may
adsorbed or tethered to the surfaces as well as the mathink about the adsorption equilibrium between a porous
ecules of a liquid filling the intermediate space. In addi-bulk solid (e.g., zeolites) and a gas. Here the comparatively
tion there has to be a reservoir, where those liquid molsmall external surface area of the solid contributes little to
ecules can be ‘deposited’, which are squeezed out frorthe overall adsorbing surface area and even may be ill de-
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be better suited for dense systems was first suggested by
Cagin [14], who also discusses the idea of a Molecular Dy-
namics version of the Gibbs-Ensemble method. Shortly af-
terwards the GEMD method was indeed realized via two
independent approaches [15-17].

It is one of these approaches, i.e., [16, 17], on which we
focus in the following. First we discuss the general idea as
well as the specific implementation of the method. We then
illustrate its performance using a number of examples, i.e.,
the gas-liquid-solid phase behavior of Lennard-Jones sys-
tems as well as the gas-liquid phase behavior of a realistic
transfer via 'transition state’ molecules molecular system, which here is n-hexane. Finally, we show
an application of the method to adsorption in a zeolite,
which pertains to the last of the examples discussed above.

Figure 1. Sketch of two simulation volumes or boxes with
the respective volumes &nd \, exchanging molecules.

The GEMD method

fined. Again one faces a situation, where in principle it isThe GEMC method originally was introduced in [12] to

sufficient to model a small number of unit cells of the po-simulate the liquid-gas coexistence of a single-component

rous bulk solid in which gas particles are inserted or elimifluid system. In this case one has two physically separated

nated according to the chemical potential of the surroundvolumes or simulation boxes, whose combined volume and

ing gas. Thus, these examples illustrate the motivation foeombined particle number is constant (as a consequence

simulating open systems in which the number of molecule®f the phase rule). Both boxes are at the same temperature

is no longer constant. and pressure. In addition they can exchange particles in a
In the 1970’s the Monte Carlo methodology was ex-way such that the chemical potential also is the same in

tended to include such open systems through the developoth boxes. For a specified temperature, and with the

ment of the grand canonical Monte Carlo (GCMC) methodproper choice of the total volume, the system may phase

[2-4]. An etension of the Molecular Dynamics method to separate so that there will be the pure liquid in one box

open systems (GCMD) was not developed until about 2@nd the pure coexisting gas in the other. This can happen

years later [5, 6]. However, in most applications a certairbelow the critical temperature, when the average density

deficiency of both the GCMC and GCMD methods is thecorresponds to the thermodynamically unstable states be-

need for specifying or independently calculating thelow the liquid-vapor coexistence line. In the following we

chemical potential. Even though the latter in principle candiscuss an analogous scheme for a molecular system within

be determinedbased on the Widom potential-distribution the MD framework.

theory [7, 8], from NVT Monte Carlo [9] or Molecular Dy-

namics [10, 11], this adds another complicated calculation.

A method which combines these two aspects into a singléhe potential

simulation run was developed by Panagiotopoulos [12] in

the context of phase coexistence in one-component fluln conventional MD one numerically solves the equations

ids. The Gibbs-Ensemble Monte Carlo (GEMC) techniqueof motion for a system dfl particles contained in a box of

does not require the reference chemical potential as inpurolume V having the total potential enerdy. Here we

In GEMC two separate simulation volumes can exchanggonsider a molecular system consistinghvfatoms inM

particles or molecules so that in equilibrium, for instance molecules, and we write the total potential enetgyas a

the temperature, the pressure and the chemical potenti@im over inter- and intra-molecular interactions, i.e.

in the boxes are the same (cf. figure 1). In this fashion a

single simulation run of a one-component fluid at a par- ~ .

ticular subcritical temperature and pressure yields the puréJ = Uinter *Uintra = Z q)(ruB)+ Zuintra({raﬂi})

gas and the pure liquid at coexistence, where each one GDKéDj !

occupies its respective simulation volume. However, other ’

thermodynamic conditions, for instance requiring differ-

ent pressures in the two simulation volumes, are also easy The first term, i ., is the sum over atom-atom pair

to implement [13]. A drawback of the MC based methods ~ . L -

usually is the low acceptance rate for particle creation oPotentials q)(rO‘B) , where fap =fa ~fg , and 1y and I

insertion in a dense phase. That Molecular Dynamics maye the position vectors of the atoms labetednd B be-

(1)
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longing to two different moleculeisandj. The second po- The GEMD equations of motion
tential energy term, L), encompasses all interactions
within a molecule, i.e., bond stretching, valence angle andin the following we present the equations of motion for
torsional distortions as well as intra-molecular non-bondedur GEMD method. In the case of liquid gas-coexistence
interactions. in a one-component system the temperature, the pressure,
In order to simulate a variable number of molecules inand the chemical potential, even though the latter two are
each of the two boxes we introduce an additional degreaot explicitly specified, must be equal in the two phases
of freedom¢; for every moleculd. & can vary between 1 and thus in the two boxes. Similar to the GEMC method
and 0, wheret,=1 means that the moleculeis in box 1, this can be achieved if every change of the volume of one
whereasg¢;=0 means that it is in box 2. For 1&> 0 the  of the boxes is accompanied by an opposite but equal
molecule is in a ‘transition state’, where it is ‘felt’ in both change of the volume of the other box. Thus, the total vol-
boxes. Thus, we rewrite the inter-molecular potential en-ume of the two boxes is constant, while the individual
ergy of the system as a function of the coordinates and theolumes are variable. The GEMD equations of motion

§ as describing this case are
Uinter({ra}a{zi}avlvvz) = pcx = mcx_rcx
S _au _ -
Z [‘D(fag,Vl)EiEj + Pa = "o, "N Pa
1<] =2 0
o1 B0 n==>20y & - Xk TO
q g §
+ O Vo)1) (18 ) + S of&) ) @
I -
Pg, = M &
=Up+Up+ o)
' (4)
p —_0U _
whereV, andV, are the volumes of the two boxes. The first "% 08
two terms,U, and U,, represent the inter-molecular poten- _ _ [ —~ o af _z ]_ 0 Az
tial energies of the first and the second box, respectively. ; (D(r“B’Vl)EJ q)(r“B’Vz)(l EJ) Z b3 o(&)
Notice that as soon as we apply periodic boundary condi- ' #1) '

tions and the inter-particle interactions are calculated in- =Pt

volving the particle’s closest images, the distance betweerPy, = Qp\
them, and therefore the inter-molecular potential energy,,
is a function of the box dimensions (or the volume if the Pv,
shape of the box is kept fixed).

At equilibrium the number of unphysical but necessary = i .
transition state molecules should be small in comparisofil€re Pq @nd Pg; are the momenta conjugate to the cartesian
to the total number of molecules. What exactly ‘small’ cqordlnaes Ta and the transfer coordlnate;., xespectively.
means we will define below. However, to satisfy this con-D iS an additional degree of freedom, @glis a parameter
dition it often is necessary to introduce an additional po-9overning the temperature relaxation. The first three equa-
tential function g&) > 0, which is equal to zero only at tions describe the 'evolutlon of a system coupled tp an ex-
£=0 and atf.=1. Here we use ternal heat bath with the temperaturg18], whereX is a

! ! coefficient, which is equal to the number of degrees of free-
dom coupled to the thermostat. If there would be only one

B Q.o[tanl(uzi)+ tan(u(l— & ))—]] , 0<& <1 box, this would correspond to the well known NVT simu-
g(Ei)‘é o otherwise(g) lation algorithm, with the temperature being controlled via
’ a Nose-Hoover thermostat. The next two equations gov-

ern the evolution of the, x.e., the transfer of the molecules

This additional pOtential introduces a barrier of hEightbetween the boxes. The last two equations are the equa-
w and steepness u between the states corresponding to #$hs of motion of the boxalume V,, where py, is a mo-
‘real’ particles or molecules, i.e., particles or moleculesmentum variable conjugate %4, and Q, is a parameter
which are entir8|y in one or the other of the two boxes,governing the volume relaxation. Thus, the volume
making the transition state unfavorable. changes are controlled by the difference between the in-

stantaneous values of the ‘external’ pressirgsand P,°
in the two boxes. Here, for each box, we employ the (sin-

:Ple_F?ze
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gle-box) constant-pressure MD algorithm proposed in ref-
erence [19], i.e., if again there would be only one box, say ;,

the first box, the equationgy, =QpM and py, =p°-P - S I L ]
would be identical to the equations of motion derived for L i .
the box volume in reference [19] (cf. also equation (16) in b T R . B S B .
reference [20]), where P is just the preassigned pressure, 08 [ *><>%<>< | B
which here is replaced by the instantaneous external pres- - X iquid 1
sure P, in the second box. Here o o6 L E
Ple: Z wil(ljfuﬁq)(?uﬁrvl)aiaj I?zj,n) 04 - liquid-gas -
=] (5) C coexistence i
a,B0j 02 - -
i B s 1
00 Looead M%%/?@\! L by
5 . . 06 0.8 1.0 12 14 16

where Ryp = Vlﬂ?’(rk, er) is a vector, which maps the -

separation of the coordinatey, and fg into the proper

distance between the atomsand 3 according to the mini- Figure 2. Phase diagram of the Lennard-Jones system in
mum image convention assuming a cubic box. In this alterms of the LJ densitg¥, and the LJ temperature, T*. The

gorithm the F, are not scaled by the box dimensions andSolid squares indicate the GEMD results for the location of
they are not mapped back into the box according to thetzhe phase bounplms. .Th&m“d lines are fits to the GEMD
boundary conditions whenever a particle leaves the pri-reSUItS as gxplalned n thextg The sses and the plusses
mary box and enters one of the surrounding image boxed'© experlmental data points for methane and argon,
The coupling to the volume fluctuations rather happensreSpEC“VEIy'

through the positions of the image particles. Note that the

summations involving the inter-particle or inter-molecu- . .
Here P is the pressure in the reference system represented

lar interactions in th i 1), (2), (4 . : L .
rﬁeantteticitn? I?c::; tiﬁcﬁj%ueatt'ﬁgsm(t )r, (ti),n( )5 atr\:vd (i) tireny box 2, i.e., the pressure in the liquid outside the force
plicitly eractions betwee eappara\tus or in the reference solution in contact with the

primary particles or molecules with their (nearest) images, : :
Thus some care has to be taken in the case of the inter swollen network or the pressure of the gas in contact with

tion of a particle or molecule with it's own images. Noteat(}Zle porous solid.

also that a detailed discussion including a formal justifi-
cation of the above equations of motion is given in [16, 17].Some technical aspects
The above equations of motion are appropriate for the P
simulation of two-phase coexistence in a one-componenltf . .

- a long-range cutoff distance,  is used when calculat-
system, and we will discuss two examples below. In OrOIe{ng thegnon-gl])onded interactioCHts then the corresponding
to simulate two-phase coexistence in a two-component '

system, the last two equations in (4) are replaced by  continuum corrections modifydg, =-0U/0¢; in equation

(4), where we must adda(UfOr +U§°r)/aﬁi to the right

. . (6) hand side. In the case of Lennard-Jones non-bonded inter-
Py =R - P actions, the usual long-range corrections become

Py, = Qe Vi

wherek = 1,2. The GEMD equations of motion appropri- o
ate for the examples discussed in the introduction are evedi” = 2%411\7112% Zéjﬁ Py (r)rzdr (8)
more simple. In these cases the last two equations in (4) vH [ ] ot
are replaced by
and U," is given by an analogous expression in whch
0.V is replaced by (1 &) andV, is replaced by/,. The indexes
Py, = QM v and L in equation (8) label distinct atom types in the in-
Py, = PP-P () teracting molecules andj. The only other change affects
P2 (wherek = 1,2). Here we must add the correction
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Figure 3. The upper panel shows the time evolutiop*dbr Figure 4. The three panels illustrate the particle exchange
the two boxes at T*=1.4 in the case of liquid-solid coexistencebetween the two boxes for one temperature at different
The lower panel shows the corresponding evolution of theéimes towards the beginning as well as towards the end of
number of particles N in the solid (upper curve), in the liquidthe simulation run. Here th&-values of the transition state
(middle curve) and in the transition state (bottom curve). particles are used to scale their cartesian position relative
to the shifted positions of the boxes, which in reality are
superimposed. The color coding distinguishes particles,
e cor - o a0 (1) 5 which initially are in different boxes (top). Subsequgntly
P = - ?EZQ ZEjLCUtTr dr the transfer is allowed. Early on there are more particles
i i

o () in the transfer state (middle) than at later times (bottom)

whereP,&" is also given by (9), however, again with the ) )
above replacements @ and V, other bulk properties. In the following examples we use
. .

The GEMD method discussed here also requires a shorf-c, = 0-88 (in Lennard-Jones units). It should be noted that
range cutoffr'_ . This is because two atontsand B be- currently we assume a constant non-bonded potential be-
cut’

longing to the respective moleculésand j may ‘collide’ 10w the short-range or ‘ghost’ cutoff distance. However,
other functional forms, which approach a finite value at

i # fog — O ~ . .
due to the strong divergence @P( q[s) as Iop even f,p =0, are possibly better alternatives.

though according to the;i?,-values, .e.§ =0 and Ei =1, The equations of motion (4) do not depend on explicit
they would belong to different boxes. Thus, the value forpesholde -values according to which a particle is counted
I Should meet two requirements. It should be sufficiently,g peing in box 1, in box 2, or in the transition state. Nev-
large to minimize the effect of unphysical ghost collisions. g ihejess the transition state is an artificial state, whose
In addition it should not affect the interactions betweenpopulation should be small in comparison to the popula-
atoms belonging to the same box. In the Lennard-Joneg,, of the real states represented by the particles consid-
systems described below, the optimal valuerfgy can be  greq 9 pelong to either of the two boxes. In other words,
found via a series of independent NVT simulations (in theg,, 1ong times each particle should be either ‘close to 0’ or
relevant temperature and density range) using increasingnse to 1' most of the time. ‘Close’ means that the long
values forr',,. The best value for's,, lies just below the  ime geviation of the particle’-values from 0 or 1 has a
onset of noticeable effects on the average pressure arh%gligible effect on the bulk properties of the systems rep-
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S experimental critical point. Hollow squares: GEMD using a
00 Lodtieier ot et ] cut and shifted LJ potential, were the long-range cutoff is at
10 A; solid squares: using a 15 A cut-off instead; small solid
08 A circles (at T=440 K): liquid densities for a 12 A and a 14 A
- F ; cutoff, respectively; plusses: result obtained for a 10 A cutoff
06 A AN including long-range coections. The error barindicate
=T ] standard deviations. These are omitted for the plusses in order
p ] to not obscure the figure. The lines (solid: GEMD; dashed:
04 T'=10 ] experiment) are again fits as described in the text to figure 2.
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Finally we like to mention that the stability of the nu-
merical solution of (4) is markedly improved if the
t Berendsen thermostat [21] is used instead of the Nose-Hoo-
ver thermostat. Even though only for the latter one can
mathematically justify that the algorithm does produce the
Figure 5. This series of panels each shows the evolution oproper ensemble averages, the obtained results were the
the densities (gas: dashed line; liquid: solid line) at differentsame in both cases within the statistical eft@j. An ad-
temperatures below and close to the critical point for theditional numerical improvement of the algorithm can be
case of gas-liquid coexistence in the LJ system. Note that tiehived by also thermalizing the transfer degrees of free-
spike-like feature in the upper panel is due to a numericalom by a direct coupling to the Berendsen thermostat. This
constraint on the maximum fluctuation of the volume. and some related aspects are discussed in detail in [22].

resented by the two boxes. That this is indeed the case Application to phase coexistence in Lennard-Jones and
illustrated by the examples below. However, for bookkeepmolecular systems

ing purposes, we sometimes distinguish between particles

belonging to box 1 or to the transition state or to box 20ur first application is the gas-liquid-solid phase diagram
according to whether thei¢;-values are in the range be- of the Lennard-Jones (LJ) system, using the inter-particle
tween 1 and 1 — t®or between 1 — 18 and 104 or be-  potential £[(a/r)*? — (o/r)®] including long-range con-
tween 10% and 0. It should be noted in this context that wetinuum corrections [22]. The GEMD density-temperature
use the Vdet algorithm to integrate the equations of mo-phase diagram is shown in figure 2. The solid boundary of
tion. A special modification, described in detail in refer- the gas-liquid coexistence density is a fit based on the law

ence [17], can be used to handle the *hard walls’ at 0 and af rectilinear diametersp(+ p.)/i2= p + C, (1-T/T)P, to-
along the¢;-direction. gether with the power lay, — Py~ 2C, (1—T/TC)[3 using the
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Figure 8. Time evolution of the number of particles N in the
zeolite, in the gas box, and in the transition state.

is due to the rather small system containing a total of 250
particles. The deviation of the simulation data from the ex-
perimental results near the triple point is possibly due to
the oversimplified form of the potential (cf. [24] and a ref-
erence therein). Figure 3 shows the evolution of the parti-
cle density for the case of liquid-solid coexistence together
with the corresponding instantaneous particle numbers
corresponding to the liquid, the solid, and the transition
state. Notice that the number of particles in the transition
state quickly decreases to a level which is low compared
to the number of particles in the boxes. The three snap-
shots shown in figure 4, which correspond to one particu-
lar temperaturekiT/e = 1.0), present a pictorial illustra-
tion of the particle transfer at different times along the sys-
tem’s trajectory. Figure 5, finally, shows the gas-liquid den-
sity evolution for a series of temperatures below and close
to the critical temperature. Notice how the densities in the
Figure 7. Using an analogous representation as in figure 4tywo boxes become virtually indistinguishable near the
this figure shows a snapshot of the model zeolite (bottomgritical temperature as they should.
containing methane molecules (shown as blue spheres) e also want to include the analogous phase diagram
diﬁUSing along channels in the zeolite. The methane m0|ECUI¢§r gas-”quid coexistence in a molecular System_ Figure 6
can transfer between the gas phase (top) and the cavities &hows the corresponding result for hexane in a system con-
the solid. taining a total of 144 molecules. The details of the model
potential and the specific parameters used in this calcula-
tion are described elsewhere [17]. The agreement between
critical density,p,, the critical temperaturdl,, andC; as  GEMD and GEMC [25, 26] as well as with the experiment
well asC, as fit parameters. F@rwe use the 3D Ising value [27] is quite good, depending of course on the accuracy of
of = 0.325. The experimental data for methane, shown fokhe interaction potential. Notice that the position of the co-
comparison, are taken frof23]. The data are converted existence reign in the Tp-plane is quite sensitive to the
to LJ units viae/k, = 148.7 K ando = 3.79A based on a fit choice ofr_ . and the inclusion of long-range corrections.
to the experimental 2nd virial coefficient. Figure 2 also
includes the liquid-solid coexistence, showing that the
GEMD method works well at high densities. Here the solidapplication to adsorption
lines are simply least-squares fits to the GEMD results. The
experimental data are for argon, again using the LJ paramqere we briefly want to mention some preliminary results
eters obtained via the 2nd virial coefficient to convert tOobtained for the physisorption of methane in a zeolite us-
LJ units [24] The scatter of the GEMD results in this CaSQng the GEMD approach_ For the sake of Comparison we

cut
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chose silicalite | (ZSM5), which has been studied via GCMC8.
by Goodbody et al. [28]. In this case the atoms of the soli®.

do not transfer between the boxes, one of which contain0.

eight ZSM5 unit cells and the other corresponds to the gas

phase. Again the details of the model parameters will bd.1.

given elsewhere [29].

Figure 7 shows a simulation snapshot, which illustratesl 2.
the methane transfer between the gas phase and the catB.
ties in the solid. The actual evolution of the number of par14.

ticles in the two boxes as a function of time is shown in
figure 8 at a gas pressure of 70 bar and a temperature of
298 K. Notice that the gas box is kept at constant pressure,

whereas the zeolite box is kept at constant volume. Thid5.

situation therefore corresponds to the set of equations of

motion, where the last two equations in (4) are replaced by6.

the equations (7).

17.

Conclusion 18.
19.

The above examples show that the GEMD method is use-

ful for simulations in which a single large molecular sys-20.

tem can be replaced by two smaller systems, which ex-

change molecules at constant chemical potential. The spé&-l.

cific advantage of the two-box approach is that the chemi-
cal potential in the reference system must not be deter-

mined separately. An advantage that the GEMD metho®2.

has over the GEMC method is that it provides direct dy-

namic information in the two boxes, like the self-diffusion 23.

coefficient in the two coexisting phases [17]. Another im-

portant point is that the GEMD method performs quite well24.

in dense systems.
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