
Introduction

There are numerous phenomena, which can be studied via
computer simulation, where it is advantageous or even nec-
essary to vary the particle number during the simulation.
Three simple examples may serve to illustrate this point.
The forces between two planar surfaces at  close proxim-
ity can be related to the microscopic interactions on the
molecular scale using the so called surface force appara-
tus [1]. A computer simulation of a surface force appara-
tus would have to include not only the solid surface-to-
solid surface interface. Usually there are molecules
adsorbed or tethered to the surfaces as well as the mol-
ecules of a liquid filling the intermediate space. In addi-
tion there has to be a reservoir, where those liquid mol-
ecules can be ‘deposited’, which are squeezed out from

between the surfaces as the inter-surface separation is re-
duced. Thus, such simulations are plagued by the compara-
tively large portion of the system devoted to the ‘inter-
face’  between the slit and the reservoir, which causes un-
wanted artifacts. A second example is the simulation of
osmotic phenomena. Here the computer simulation would
have to include both the osmotic cell as well as the corre-
sponding bulk solvent surrounding it. One may for instance
think of simulating the swelling of a polymer network in
contact with a solvent. Because molecular simulations still
contain rarely more than a few thousand atoms, the inclu-
sion of a large interfacial region may render such a simu-
lation impossible (for realistic systems). Finally, we may
think about the adsorption equilibrium between a porous
bulk solid (e.g., zeolites) and a gas. Here the comparatively
small external surface area of the solid contributes little to
the overall adsorbing surface area and even may be ill de-
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fined. Again one faces a situation, where in principle it is
sufficient to  model a small number of unit cells of the po-
rous bulk solid in which gas particles are inserted or elimi-
nated according to the chemical potential of the surround-
ing gas. Thus, these examples illustrate the motivation for
simulating open systems in which the number of molecules
is no longer constant.

In the 1970’s the Monte Carlo methodology was ex-
tended to include such open systems through the develop-
ment of the grand canonical Monte Carlo (GCMC) method
[2–4]. An extension of the Molecular Dynamics method to
open systems (GCMD) was not developed until about 20
years later [5, 6]. However, in most applications a certain
deficiency of both the GCMC and GCMD methods is the
need for specifying or independently calculating the
chemical potential. Even though the latter in principle can
be determined, based on the Widom potential-distribution
theory [7, 8], from NVT Monte Carlo [9] or Molecular Dy-
namics [10, 11], this adds another complicated calculation.
A method which combines these two aspects into a single
simulation run was developed by Panagiotopoulos [12] in
the context of phase coexistence in one-component flu-
ids. The Gibbs-Ensemble Monte Carlo (GEMC) technique
does not require the reference chemical potential as input.
In  GEMC two separate simulation volumes can exchange
particles or molecules so that in equilibrium, for instance,
the temperature, the pressure and the chemical potential
in the boxes are the same (cf. figure 1). In this fashion a
single simulation run of a one-component fluid at a par-
ticular subcritical temperature and pressure yields the pure
gas and the pure liquid at coexistence, where each one
occupies its respective simulation volume. However, other
thermodynamic conditions, for instance requiring differ-
ent pressures in the two simulation volumes, are also easy
to implement [13]. A drawback of the MC based methods
usually is the low acceptance rate for particle creation or
insertion in a dense phase. That Molecular Dynamics may

be better suited for dense systems was first suggested by
Cagin [14], who also discusses the idea of a Molecular Dy-
namics version of the Gibbs-Ensemble method. Shortly af-
terwards the GEMD method was indeed realized via two
independent approaches [15–17].

It is one of these approaches, i.e., [16, 17], on which we
focus in the following. First we discuss the general idea as
well as the specific implementation of the method. We then
illustrate its performance using a number of examples, i.e.,
the gas-liquid-solid phase behavior of Lennard-Jones sys-
tems as well as the gas-liquid phase behavior of a realistic
molecular system, which here is n-hexane. Finally, we show
an application of the method to adsorption in a zeolite,
which pertains to the last of the examples discussed above.

The GEMD method

The GEMC method originally was introduced in [12]  to
simulate the liquid-gas coexistence of a single-component
fluid system. In this case one has two physically separated
volumes or simulation boxes, whose combined volume and
combined particle number is constant (as a consequence
of the phase rule). Both boxes are at the same temperature
and pressure. In addition they can exchange particles in a
way such that the chemical potential also is the same in
both boxes.  For a specified temperature, and with the
proper choice of the total volume, the system may phase
separate so that there will be the pure liquid in one box
and the pure coexisting gas in the other. This can happen
below the critical temperature, when the average density
corresponds to the thermodynamically unstable states be-
low the liquid-vapor coexistence line.  In the following we
discuss an analogous scheme for a molecular system within
the MD framework.

The potential

In conventional MD one numerically solves the equations
of motion for a system of N particles contained in a box of
volume V having the total potential energy U.  Here we
consider a molecular system consisting of N atoms in M
molecules, and we write the total potential energy U as a
sum over inter- and intra-molecular interactions, i.e.
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Figure 1. Sketch of two simulation volumes or boxes with
the respective volumes V
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 and V

2
 exchanging molecules.
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longing to two different molecules i and j. The second po-
tential energy term, Uintra, encompasses all interactions
within a molecule, i.e., bond stretching, valence angle and
torsional distortions as well as intra-molecular non-bonded
interactions.

In order to simulate a variable number of molecules in
each of the two boxes we introduce an additional degree
of freedom ξi for every molecule i. ξi can vary between 1
and 0, where ξi=1 means that the molecule i is in box 1,
whereas ξi=0 means that it is in box 2. For 1> ξi > 0 the
molecule is in a ‘transition state’, where it is ‘felt’ in both
boxes. Thus, we rewrite the inter-molecular potential en-
ergy of the system as a function of the coordinates and the
ξi as

{ } { }( )
( )[

( )( )( )] ( )

( )

U r V V

r V

r V g

U U g

inter i

i j
i j

i j

i j i

i

i

i

r

r

r

α

αβ

α β

αβ

ξ

ξ ξ

ξ ξ ξ

ξ

, , ,

,

,

,

1 2

1

2

1 2

1 1

=

+

+ − − +

= + +

<
∈ ∈

∑

∑
∑

Φ

Φ (2)

where V1 and V2 are the volumes of the two boxes. The first
two terms, U1 and U2, represent the inter-molecular poten-
tial energies of the first and the second box, respectively.
Notice that as soon as we apply periodic boundary condi-
tions and the inter-particle interactions are calculated in-
volving the particle’s closest images, the distance between
them, and therefore the inter-molecular potential energy,
is a function of the box dimensions (or the volume if the
shape of the box is kept fixed).

At equilibrium the number of unphysical but necessary
transition state molecules should be small in comparison
to the total number of molecules. What exactly ‘small’
means we will define below. However, to satisfy this con-
dition it often is necessary to introduce an additional po-
tential function g(ξi) > 0, which is equal to zero only at
ξi=0 and at ξi=1. Here we use
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This additional potential introduces a barrier of height
w and steepness u between the states corresponding to the
‘real’ particles or molecules, i.e., particles or molecules
which are entirely in one or the other of the two boxes,
making the transition state unfavorable.

The GEMD equations of motion

In the following we present the equations of motion for
our GEMD method. In the case of liquid gas-coexistence
in a one-component system the temperature, the pressure,
and the chemical potential, even though the latter two are
not explicitly specified, must be equal in the two phases
and thus in the two boxes.  Similar to the GEMC method
this can be achieved if every change of the volume of one
of the boxes is accompanied by an opposite but equal
change of the volume of the other box.  Thus, the total vol-
ume   of the two boxes is constant, while the individual
volumes are variable.  The GEMD equations of motion
describing this case are
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Here 
r
pα and p

iξ are the momenta conjugate to the cartesian
coordinates 

r
rα and the transfer coordinate xi, respectively.

h is an additional degree of freedom, and QT is a parameter
governing the temperature relaxation. The first three equa-
tions describe the evolution of a system coupled to an ex-
ternal heat bath with the temperature T [18], where X is a
coefficient, which is equal to the number of degrees of free-
dom coupled to the thermostat. If there would be only one
box, this would correspond to the well known NVT simu-
lation algorithm, with the temperature being controlled via
a Nose-Hoover thermostat. The next two equations gov-
ern the evolution of the xi, i.e., the transfer of the molecules
between the boxes. The last two equations are the equa-
tions of motion of the box volume V1, where pV1

is a mo-
mentum variable conjugate to V1, and QP is a parameter
governing the volume relaxation. Thus, the volume
changes are controlled by the difference between the in-
stantaneous values of the ‘external’ pressures P1

e and P2
e

in the two boxes. Here, for each box, we employ the (sin-
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gle-box) constant-pressure MD algorithm proposed in ref-
erence [19], i.e., if again there would be only one box, say
the first box, the  equations p Q VV P1 1= &  and &p P PV

e
1 1= −

would be identical to the equations of motion derived for
the box volume in reference [19] (cf. also equation (16) in
reference  [20]), where P is just the preassigned pressure,
which here is replaced by the instantaneous external pres-
sure P2

e in the second box. Here
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/ ,=  is a vector, which maps the

separation of the coordinates 
r
rα  and 

r
rβ  into the proper

distance between the atoms α and β according to the mini-
mum image convention assuming a cubic box. In this al-

gorithm the 
r
rα  are not scaled by the box dimensions and

they are not mapped back into the box according to the
boundary conditions whenever a particle leaves the pri-
mary box and enters one of the surrounding image boxes.
The coupling to the volume fluctuations rather happens
through the positions of the image particles. Note that the
summations involving the inter-particle or inter-molecu-
lar interactions in the equations (1), (2), (4), and (5) are
meant to implicitly include the interactions between the
primary particles or molecules with their (nearest) images.
Thus some care has to be taken in the case of the interac-
tion of a particle or molecule with it’s own images. Note
also that a detailed discussion including a formal justifi-
cation of the above equations of motion is given in [16, 17].

The above equations of motion are appropriate for the
simulation of two-phase coexistence in a one-component
system, and we will discuss two examples below. In order
to simulate two-phase coexistence in a two-component
system, the last two equations in (4) are replaced by
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where k = 1,2. The GEMD equations of motion appropri-
ate for the examples discussed in the introduction are even
more simple. In these cases the last two equations in (4)
are replaced by
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Here P is the pressure in the reference system represented
by box 2, i.e., the pressure in the liquid outside the force
apparatus or in the reference solution in contact with the
swollen network or the pressure of the gas in contact with
the porous solid.

Some technical aspects

If a long-range cutoff distance rcut is used when calculat-
ing the non-bonded interactions, then the corresponding

continuum corrections modify & /p U
i iξ ∂ ∂ξ= −  in equation

(4), where we must add ( )− +∂ ∂ξU Ucor cor
i1 2  to the right

hand side. In the case of Lennard-Jones non-bonded inter-
actions, the usual long-range corrections become

( )U r r drcor
V i
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j
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and U2
cor is given by an analogous expression in which ξi

is replaced by (1 – ξi) and V1 is replaced by V2. The indexes
ν and µ in equation (8) label distinct atom types in the in-
teracting molecules i and j. The only other change affects
Pk

e (where k = 1,2). Here we must add the correction

Figure 2. Phase diagram of the Lennard-Jones system in
terms of the LJ density, ρ*, and the LJ temperature, T*. The
solid squares indicate the GEMD results for the location of
the phase boundaries. The solid lines are fits to the GEMD
results as explained in the text. The crosses and the plusses
are experimental data points for methane and argon,
respectively.
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where P2
e,cor is also given by (9), however, again with the

above replacements for ξi and V1.
The GEMD method discussed here also requires a short-

range cutoff r' cut. This is because two atoms α and β be-
longing to the respective molecules i and j may ‘collide’

due to the strong divergence of ( )Φ
r
rαβ  as 

r
rαβ → 0  even

though according to their ξ-values, i.e., ξi ≈ 0 and ξj  ≈ 1,
they would belong to different boxes. Thus, the  value for
r'cut should meet two requirements. It should be sufficiently
large to minimize the effect of unphysical ghost collisions.
In addition it should not affect the interactions between
atoms belonging to the same box. In the Lennard-Jones
systems described below, the optimal value for r'cut can be
found via a series of independent NVT simulations (in the
relevant temperature and density range) using increasing
values for r' cut. The best value for r'cut lies just below the
onset of noticeable effects on the average pressure and

Figure 3. The upper panel shows the time evolution of ρ* for
the two boxes at T*=1.4 in the case of liquid-solid coexistence.
The lower panel shows the corresponding evolution of the
number of particles N in the solid (upper curve), in the liquid
(middle curve) and in the transition state (bottom curve).

Figure 4. The three panels illustrate the particle exchange
between the two boxes for one temperature at different
times towards the beginning as well as towards the end of
the simulation run. Here the ξ

i
-values of the transition state

particles are used to scale their cartesian position relative
to the shifted positions of the boxes, which in reality are
superimposed. The color coding distinguishes particles,
which initially are in different boxes (top). Subsequently
the transfer is allowed. Early on there are more particles
in the transfer state (middle) than at later times (bottom)

other bulk properties. In the following examples we use
r'cut = 0.88 (in Lennard-Jones units). It should be noted that
currently we assume a constant non-bonded potential be-
low the short-range or ‘ghost’ cutoff distance. However,
other functional forms, which approach a finite value at
r
rαβ = 0 , are possibly better alternatives.

The equations of motion (4) do not depend on explicit
threshold ξi-values according to which a particle is counted
as being in box 1, in box 2, or in the transition state. Nev-
ertheless the transition state is an artificial state, whose
population should be small in comparison to the popula-
tion of the real states represented by the particles consid-
ered to belong to either of  the two boxes. In other words,
for long times each particle should be either ‘close to 0’ or
‘close to 1’ most of the time. ‘Close’ means that the long
time deviation of the particle’s ξi-values from 0 or 1 has a
negligible effect on the bulk properties of the systems rep-
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resented by the two boxes. That this is indeed the case is
illustrated by the examples below. However, for bookkeep-
ing purposes, we sometimes distinguish between particles
belonging to box 1 or to the transition state or to box 2
according to whether their ξi-values are in the range be-
tween 1 and 1 – 10–4 or between 1 – 10–4 and 10–4 or be-
tween 10–4 and 0. It should be noted in this context that we
use the Verlet algorithm to integrate the equations of mo-
tion. A special modification, described in detail in refer-
ence [17], can be used to handle the ‘hard walls’ at 0 and 1
along the ξi-direction.

Figure 5. This series of panels each shows the evolution of
the densities (gas: dashed line; liquid: solid line) at different
temperatures below and close to the critical point for the
case of gas-liquid coexistence in the LJ system. Note that the
spike-like feature in the upper panel is due to a numerical
constraint on the maximum fluctuation of the volume.

Figure 6. Liquid-gas coexistence curve for hexane.  Hollow
circles: experimental data; hollow triangles: GEMC result
obtained with a 13.8 Å cutoff including long-range
corrections. The large solid circle corresponds to the
experimental critical point. Hollow squares: GEMD using a
cut and shifted LJ potential, were the long-range cutoff is at
10 Å; solid squares: using a 15 Å cut-off instead; small solid
circles (at T=440 K): liquid densities for a 12 Å and a 14 Å
cutoff, respectively; plusses: result obtained for a 10 Å cutoff
including long-range corrections. The error bars indicate
standard deviations. These are omitted for the plusses in order
to not obscure the figure.  The lines (solid: GEMD; dashed:
experiment) are again fits as described in the text to figure 2.

Finally we like to mention that the stability of the nu-
merical solution of (4) is markedly improved if the
Berendsen thermostat [21] is used instead of the Nose-Hoo-
ver thermostat. Even though only for the latter one can
mathematically justify that the algorithm does produce the
proper ensemble averages, the obtained results were the
same in both cases within the statistical error [17]. An ad-
ditional numerical improvement of the algorithm can be
achived by also thermalizing the transfer degrees of free-
dom by a direct coupling to the Berendsen thermostat. This
and some related aspects are discussed in detail in [22].

Application to phase coexistence in Lennard-Jones and
molecular systems

Our first application is the gas-liquid-solid phase diagram
of the Lennard-Jones (LJ) system, using the inter-particle
potential 4ε[(σ/r)12 – (σ/r)6] including long-range con-
tinuum corrections [22]. The GEMD density-temperature
phase diagram is shown in figure 2. The solid boundary of
the gas-liquid coexistence density is a fit based on the law
of rectilinear diameters, (ρl + ρg)/2= ρc + C1 (1–T/Tc)

β, to-
gether with the power law ρl – ρg= 2C2 (1–T/Tc)

β using the
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Figure 7. Using an analogous representation as in figure 4
this figure shows a snapshot of the model zeolite (bottom)
containing methane molecules (shown as blue spheres)
diffusing along channels in the zeolite. The methane molecules
can transfer between the gas phase (top) and the cavities in
the solid.
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Figure 8. Time evolution of the number of particles N in the
zeolite, in the gas box, and in the transition state.

critical  density, ρc, the critical temperature, Tc, and C1 as
well as C2 as fit parameters. For β we use the 3D Ising value
of ≈ 0.325. The experimental data for methane, shown for
comparison, are taken from [23]. The data are converted
to LJ units via ε/kB = 148.7 K and σ = 3.79Å based on a fit
to the experimental 2nd virial coefficient. Figure 2 also
includes the liquid-solid coexistence, showing that the
GEMD method works well at high densities. Here the solid
lines are simply least-squares fits to the GEMD results. The
experimental data are for argon, again using the LJ param-
eters obtained via the 2nd virial coefficient to convert to
LJ units [24]. The scatter of the GEMD results in this case

is due to the rather small system containing a total of 250
particles. The deviation of the simulation data from the ex-
perimental results near the triple point is possibly due to
the oversimplified form of the potential (cf. [24] and a ref-
erence therein). Figure 3 shows the evolution of the parti-
cle density for the case of liquid-solid coexistence together
with the corresponding instantaneous particle numbers
corresponding to the liquid, the solid, and the transition
state. Notice that the number of particles in the transition
state quickly decreases to a level which is low compared
to the number of particles in the boxes. The three snap-
shots shown in figure 4, which correspond to one particu-
lar temperature (kBT/ε = 1.0), present a pictorial illustra-
tion of the particle transfer at different times along the sys-
tem’s trajectory. Figure 5, finally, shows the gas-liquid den-
sity evolution for a series of temperatures below and close
to the critical temperature. Notice how the densities in the
two boxes become virtually  indistinguishable near the
critical temperature as they should.

We also want to include the analogous phase diagram
for gas-liquid coexistence in a molecular system. Figure 6
shows the corresponding result for hexane in a system con-
taining a total of 144 molecules. The details of the model
potential and the specific parameters used in this calcula-
tion are described elsewhere [17]. The agreement between
GEMD and GEMC [25, 26] as well as with the experiment
[27] is quite good, depending of course on the accuracy of
the interaction potential. Notice that the position of the co-
existence region in the T-ρ-plane is quite sensitive to the
choice of rcut and the inclusion of long-range corrections.

Application to adsorption

Here we briefly want to mention some preliminary results
obtained for the physisorption of methane in a zeolite us-
ing the GEMD approach. For the sake of comparison we



326 J. Mol. Model. 1996, 2

chose silicalite I (ZSM5), which has been studied via GCMC
by Goodbody et al. [28]. In this case the atoms of the solid
do not transfer between the boxes, one of which contains
eight ZSM5 unit cells and the other corresponds to the gas
phase. Again the details of the model parameters will be
given elsewhere [29].

Figure 7 shows a simulation snapshot, which illustrates
the methane transfer between the gas phase and the cavi-
ties in the solid. The actual evolution of the number of par-
ticles in the two boxes as a function of time is shown in
figure 8 at a gas pressure of 70 bar and a temperature of
298 K. Notice that the gas box is kept at constant pressure,
whereas the zeolite box is kept at constant volume. This
situation therefore corresponds to the set of equations of
motion, where the last two equations in (4) are replaced by
the equations (7).

Conclusion

The above examples show that the GEMD method is use-
ful for simulations in which a single large molecular sys-
tem can be replaced by two smaller systems, which ex-
change molecules at constant chemical potential. The spe-
cific advantage of the two-box approach is that the chemi-
cal potential in the reference system must not be deter-
mined separately. An advantage that the GEMD method
has over the GEMC method is that it provides direct dy-
namic information in the two boxes, like the self-diffusion
coefficient in the two coexisting phases [17]. Another im-
portant point is that the GEMD method performs quite well
in dense systems.
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